TAB1, I

No.	Componnd	Crninea pigiterns. ${ }^{\text {a }}$	Rene fressers:
1	Asn-Arg-Val-Tyr-Val-His-Pro-Phe*	100	100
2	Val-Tyr-Ile-His-Pro-Phe	U. 1	
:	cyclo-(-Val-Tyr-Ile-His-Pro-Phe-)	U.1	10.19
4	cyclo-(-Val-Tyr-Cily-Gly-His-Gly-) ${ }^{\text {a }}$	1).00.5	
.	cyclo-(-Cily-Tyr-Cily-(ily-Gly-His-) ${ }^{\text {b }}$	1.i)	<0.01
©	cyclo-(-Cily-Tyr-Cily-(ily-His-Cily-) ${ }^{\text {c }}$	1). 10.5	
7	cyclo-(-Cily-D) Ty-Gly-Cly-His-Cily- ${ }^{\text {b }}$	1). 018 i	
\checkmark	cyclo-(-Ty)-His-)*	1).00:3	

ponent, no starting material, and fan minor components. A $170-\mathrm{mg}$ portion was dissolved in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(1: 1)$, applied in bands on five sheets of Whatman No. 3MM filter paper, and subjected to electrophoresis at $\mathrm{pH} 3 . \overline{3}$. The major band at E_{H} (0.50 was elnted with water and lyophilized to yield 63 mg of white powder: single spot on paper electrophoresis at pH 3.5 (E_{H} $0.53)$ and $\mathrm{pH} 6.5\left(E_{\mathrm{H}} 0 . \overline{\mathrm{I}} 1\right)$; on paper chromatography, R_{i} (0.74: ninhydrin and Panly + ; amino acid: malysis; Val 1.00, Tyr 0.57, Ile 0.91, His 1.02, Pro 0.98, Phe 0.94.
ryclo-(-Val-Tyr-He-Hib-Pro-Phe-), --To a stirred solntinn of 16 1 ng (0.084 mmole) of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride in 2 ml of DMF was added dropwise over 14 hr 32 mg (0.04 mmole) of Val-Tyr-He-His-Pro-Phe dissolved in 14 ml of DMF. After 24 hr at room temperatmre in the dark, paper electrophoresis showed no starting material at, $E_{\mathrm{H}} 0.50$ (pH 3.5), and in addition to several minar spots, a single major component at $E_{\mathrm{H}} 0.40$ (pH 3.5); Panly + , ninhydrin - . The solvent was removed in vacuo and the residue was dissolved in MeOH, applied in bands on sheets of Whatman No. 3MII filter paper. Following electrophoresis, the band at $E_{\mathrm{H}} 0.40$ was ehnted with water and lyophilized to yield $15 \mathrm{mg}(47 \%)$ of a white powder: single spot on paper electrophoresis at plf 3.5, $E_{1 f}$ 0.43 ; Pauly + , ninhydrin - ; amino acid analysis, Val 1.07, Tyr 0.91, Ile 0.89, His 1.01, Pro 1.04, Phe 1.08.

Acknowledgments.-We are grateful to Dr. Kemneth D. Kopple for samples of cyelie peptides, Drs. P. A. Lehman, T. C. Lee, and G. Windridge for assistance with the bioassays, Drs. B. Katzung and S. J. Feinglass for assistance with computer programming, and Dr. D. Nitecki for her helpful discussions and a sample of the soluble carbodiimide derivative used in the cyclization reaction.

Hypotensive, Antiadrenergic, and Antihistaminic 3-Substituted 2-Methyl(or 2-Phenyl-) 4(3H)-quinazolones

Shin Hayao, H. J. Havera, ${ }^{1}$ W. G. Stryceer
Therapeutics Research Division, Miles Laboratories, Inc., Elkhart, Indiana 46514
ayı Exrique Hong
Instituto Miles de Terapentica Experimental, Lpartado Postal 32026, Calzada Jochimilco 77 Mexico 22, D.F., Mexico

Received April 22, 196.9
3-Aryl-2-methyl-4(3H)-quinazolones' are known to possess hypnotic, sedative, and anticonvulsant activities. Also, 3- ω-dialkylammoalkyl-2-methyl-4(3H)-quin-

[^0]azolones ${ }^{3}$ are reported to have similar activities. Onr previous experience with N-arylpiperazine derivatives ${ }^{4}$ having sedative, hypotensive, and antiadrenergic activities led us to study certain 3 - ω-(4 -aryl-1-piperazinyl) alkyl-2-methyl- (or 2-phenyl-) $4(3 \mathrm{H}$)-quinazulones (I) (Tables I and II).

These compounds were readily prepared by heating 2-methyl- (or 2-phenyl-) 4-oxo-4H-3, 1-benzoxazine (II) with appropriate primary amines (method A) or by treating isatoic anhydride (III) with the amines to give o-amino-N-substituted benzamides (IV) which were then benzoylated and cyclized with $\mathrm{Ac}_{2} \mathrm{O}$ (method B) (Scheme I). I $\left(\mathrm{R}^{\prime}=\mathrm{CH}_{3}\right)$ is also prepared by heating IV in $\mathrm{Ac}_{2} \mathrm{O}$. The details of the preparative chemistry have been described in a recent patent. ${ }^{5}$

SChem1, I
Method A:

Method B:

$\mathrm{RNH}_{-}+$

Pharmacology.--The activity of compounds of this series was evaluated as follows: antiadrenergic action
(3) (a) A. Buzas and C. Hoffmann, Bull. Soc. Chim. France, 1889 (1979): (b) K. H. Boltze, H. D. Dell. H. Lehwald, D. Lorenz, and M. RabergSchweer, Arzneimittel-Forsch. 13, 688 (1963): (c) A. P. Bhaduri, N. M. Khanna, and M. L. Dhar, J. Sci. Ind. Res. (India), 21B, 378 (1962); Chem. Abstr., 57, 13754 (1962).
(4) (a) S. Hayao and R. N. Sehnlt, J. Org. Chem., 26, 3414 (1961); (1), S. Hayao. R. N. Schut, and W. G. Strycker, J. Med. Chem. 6, 133 (1963): (e) S. Hayao, H. J. Havera, W. G. Strycker, T. J. Leipzig. R. A. Kulp, and H. E. Hartzler, ibid., 8, 807 (1965): (d) R. Rodriguez, E. Hong, H. Vidrio. and E. G. Pardo. J. Pharmucol. Exptl. Therap., 148, 54 (196̄̄): (e) S. ILayau, H. J. Havera, W. G. Stryeker, T. J. Leipzig. and R. Rodrignez, J. Mer. Chem., 10, 400 (1967).
(5) S. Hayao, U. S. Patent 3,231,572 (Jan 25, 1966).

Table I

Table II

No.	n	R	Y	B	Formula	$\mathrm{Mp},{ }^{\circ} \mathrm{C}$	Analyses
19	2	CH_{3}	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl}$	220-222 dec	HCl
20	2	CH_{3}	$7-\mathrm{Cl}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}$	127-128	N
					$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O} \cdot \mathrm{HCl}$	238-241	N
21	3	$\mathrm{C}_{6} \mathrm{H}_{5}$	H		$\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$	205-206 dec	N
22	3	$\mathrm{C}_{6} \mathrm{H}_{5}$	H		$\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}$	112.5-115 dec	N
23	3	CH_{3}	H		$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$	198-200	N

was assessed on the rabbit aortic strip, the cat nictitating membrane, and the dog blood pressure; hypotensive action on the blood pressure of anesthetized rats and dogs; antihistaminic action on the guinea pig ileum; sedative activity by gross observation of unanesthetized rats.

Most compounds displayed parallel antiadrenergic and hypotensive actions, the most potent being 9,13 , and 14. Compound 10, which was studied in more detail, blocked aortic strip and nictitating membrane responses to epinephrine and reversed the vasopressor response to epinephrine in the dog. This compound produced an intense and long-lasting blood pressure fall in rats and dogs, at doses as low as $0.1 \mathrm{mg} / \mathrm{kg}$ iv. Cross circulation experiments in dogs revealed lack of
a central component in the vascular action of the compound. In a mecamylamine-hypertensive dog, daily oral doses of $10.0 \mathrm{mg} / \mathrm{dog}$ produce a sustained decrease of blood pressure during 2 months of continued administration.

Compounds 3, 5, 8-10, 17, and 18 displayed moderate antihistaminic effect. Compound $\mathbf{1 0}$ was the most potent of the group; however, it was slightly less active than diphenhydramine. None of the members of this series elicited sedative action in the rat, at doses up to $31.0 \mathrm{mg} / \mathrm{kg}$ po.

Experimental Section ${ }^{6}$

The preparative method A is represented in an experiment as follows.

2-Methy|-3-|3-(4-phenyl-1-piperazinyl)propyll-4(3H)-quinazolone (2). - A mixtme of 2 -methyl-4-oxo-4l--3, 1-benzoxaminc

 br and dissolved in XeOH. The XheOH soldidin was treated with dry HCl to give a sat, vield 36.5 g. The whl was recrustal-
 sample of the sall was converted to the free bate, yield 3.9 g . The free hase was rectrathized (aqueons ArDe), mp 104-10.5.

Nethod B is exemplified in the following experiment

4-13-(2-Amino-5-chlorobenzamido)propyl]-1-phenylpiperazine.
T1) 1-(3-aminopropyl)-4-phenylpipervane $1 \times 7.6 \mathrm{~g}, 0.4$ mole) in 100 ml of $\mathrm{C}_{6} \mathrm{H}_{6}$ was added 6 -chtoroisatoic anhydude $179.0 \mathrm{~g}, \mathrm{u} .4$ mole); the mixture was heated on a semm bath for 1 hr aller
 1. The mixtmre :and the insohble solid was collected, yield 132.9
 1) \IF), mp $152-150^{\circ}$.

6-Chloro-2-phenyl-3-[3-(4-phenyl-1-piperazinylpropyl]-4(3H)quinazolone (16).- A snepension of 4 - 3 -(2-amino-i)-chlorobenzanido propyll-1-phenyhiperazine ($\boldsymbol{y} \mathrm{g} \mathrm{g}, 0.14 \mathrm{~mole}$) in aoo
 nomb to give the comesponding bensanide of mp 190.5-200.5 ${ }^{\circ}$. rield $4: 3.6 \mathrm{~g}$. The above benzanide (43.8 g , $0.0 \mathrm{~g}_{2}$ nnole) in 150 mol of Ars() was refluxed for 16 h '. The solvent was removed in vacuo and the residne was eryshallized (arphoms Ac.We), mp $126-131^{\circ}$
(6) All melting fmincs are corrected and were determinall with a hanchi melting peint apparalus. Ir speecra were letermined witi, a l'erkin-limes Nodel 237 spectrophotometer. Titrations were carried ont with a Surgent Hodet I) recording titrator. All analyical samples had ir spectra compatible with cheir assigned strmemres. The analytieal samples rave valnes for $\therefore \mathrm{H} . \mathrm{N}$, and HCl within $0 .+\%$ of the theoretical waters.

meta-Substituted Benzenesulfonylureas as Hypoglycemic Agents

Haffkine Instituts, Bombey-12. India
Mereided March 25, 145:/

The literature during the past decade on the synthesis and hypoglycemic activity of substituted benzenesulfonylureas is very extensive but contains very few meta-(mono)substituted derivatives. ${ }^{2,3}$ The present note describes the synthesis and screening for hypoglycemic activity of such meta-substituted benzenesulfonylureas wherein the substituents are $\mathrm{Cl}, \mathrm{F}, \mathrm{Me}$, on CH_{3}. These have been obtained by the treatment of the eorresponding meta-substituted benzenesulfonylthioureas with $\mathrm{H}_{2} \mathrm{O}_{2}$ under alkaline conditions. ${ }^{4}$ The sulfonylthioureas were syuthesized by the interaction of the benzenesulfonamides and appropriate isothiocyanates in $\mathrm{Me} \mathrm{yCO}_{\mathrm{CO}}$ under alkaline conditions." The requisite benzenesulfonamides were prepared from the benzenesulfonyl chlorides which in turn were obtained

[^1]by diazotization of the eorresponding anilines followed by the action of SO_{2} in glacial AcOH ."

The relevant data for new melt-wibutituted beneme sulfonylthionreas and the sulfonglureas atre given in Tables I and Il, respectively.

Pharmacology - All the benzenemifonymeas hatw been evahated tor their hypoglycemic activitr in normal healthy rabbits. The mimats were fasted $18 \cdots 20 \mathrm{hr}$ prior to the oral administration of $30 \mathrm{mg} / \mathrm{kg}$ of the test compomels. Blond sugar was estimeted by somogyt's mothod using Nelson's reagent nut the activity at different intervals up to 7 her is wiren in Thalle II as per cent change in blood sngar.

Tivelve ont of ${ }^{2}$ emmponnds were almost inactive. Significant activity was shown by threc componnds (34, 41, and 45), and in all these three componnds R^{\prime} was n-propyl. The order of activity in relation to the mbetituent I was $\mathrm{CH}_{3}>\mathrm{Cl}>\mathrm{F}>\mathrm{Cl}_{3}$ while that with regard to the alkyl group) R^{\prime} was $n-\mathrm{C}_{3} \mathrm{H}_{7}>i-\mathrm{C}_{3} \mathrm{H}_{7}>$ $\mathrm{C}_{6} \mathrm{H}_{11}>{ }_{n-\mathrm{C}_{1} \mathrm{H}_{9}>}>{ }_{i-\mathrm{C}_{6} \mathrm{H}_{9}}>\mathrm{C}_{2} \mathrm{H}_{5}>\mathrm{CH}_{2} \mathrm{CH}-\left(\mathrm{H}_{2}\right.$.

N-m-Tolylanlfonyl-N'-n-propylnrea (41) was found to be the most potent in the series, showing blood sugat reduction of 2.20° a in rabits and of 30.4° in rats after 5 hr. It was also tested along with tollmtamide at :and at 100 mg kg in both species and wats found to be. slightly less potent than tolbutamide. Crossover tosts eonfirmed this. The LD_{50} (or:al) in albitu mice for 41 wis 2.0 g kg (for tolbutimide $2.6 \mathrm{~g} / \mathrm{kg}$).

Experimental Section ${ }^{9}$

m-Chlorobenzenesulfonamide.--m-Chbroaniline $125.5 \mathrm{~g}, 0: 2$ mole) in 80 ml of concentrated HCl and 200 ml of Ha) was
 diazotized colution was dowly added wihh stirring to 200 ml of
 $1+\mathrm{g})$ and concentrated $\mathrm{HCl}(15 \mathrm{ml})$ al $-\mathrm{a}-10^{\circ}$. The mixture was stired for 30 min and was allowed to stand for 3 hr at rom temperature. The oily layer of m-chhmobenzenesulfonvl chtoride
 stirred for 3 hr and left overnight. Excess Nita was then removed by heating on $: 1$ wat er bath. The wold that separated on

similany prepared were m-flnorobenzenesulfonmide in 22.3';

 mip $\left(21-122^{\circ}\right)$.
\mathbf{N} - n-Fluorobenzenesulfonyl-N'-n-propylthiourea (10). . $/ 1$ Fhorobenzenesulfonmide ($3.5 \mathrm{~g}, 0.02$ mole) was dissolved in

 and the mixame was reflixed for :3 hr. The sulvent was then renkeved and the rexidne was diluted winh $\mathrm{H}_{2} \mathrm{O}$ (50 ml). The sohntion was decolorized, filiered, aridified with HCl , and crystallized to obtain the desired componmed.

All the benzenesulfonythioneas wer prepared the above procedure and are listed in Table 1 .

[^2]
[^0]: (1) 'ru whon incuiries should be addressed.
 (2) (a) M. I.. Gujral. P. N. Saxena, and R. S. Tiwari, Indian J. Men. Kes, 43, 637 (1955); (b) G. B. Jackman, V. Petrow, and O. Stephenson, J. Pharm, Pharmacol., 12, 529 (1960).

[^1]: (1) To whom communications regarding this publication should be addressed.
 (2) Farbwerke Hoechst A.-G.. German Patent 974,062 (1960); Chem, Abstr., 66. 4679i (1962).
 (3) J. R. Geigy, A.G., Swiss Patent 377,801 (1964); Chein. Abstr., 62, 9060 ${ }^{2}$ (1965).
 (4) M. H. Shah, M. Y. Mhasalkar, V. N. Pack; and ('. V. Beliwala J. Sici. Ind. Res. (India), 18B, 202 (1959).
 (it) S. l'ecersen, Ber., 83, sit (1950)

[^2]: O. Steintort, bid., 90, 841 (1950),
 (i) M. Somoryi. J. Biol Chem, 160, 64 (1940.
 (8) N. Nelsun, ibin., 153, 37-5 (1944).
 (9) Where analyses are indicated only lay symbols of che elements. analytical results obtained ton those elements were within $\pm 0.4 \%$ whe theoretical values.
 (10) C. Paal, Ber., 34, 2748 (1901).
 (11) R. W. Tait, E. Price, I. R. Fox, l. C. Lewis, K. K. Andersen, and G. T. Davis, J. Am. Chem. Soc., 85, 709 (1963).
 (12) J. J. Griffen, Am. Chem, J. 19, 173 (1897); throught the 'Dictionary of Organic Compounds." I. Heilbron and H. M. Gunbury. Ed., Fyre and \therefore potiswoode, London, 1953, p 518.
 1(1, (G): Chem, Ahwo. 54, 350) (1! (\%).

